数学@ふたば
[ホーム]

[掲示板に戻る]
レス送信モード
おなまえ
E-mail
題  名
コメント
添付File []
削除キー(記事の削除用。英数字で8文字以内)

画像ファイル名:1653413065935.jpg-(15334 B)
15334 B無題Name名無し22/05/25(水)02:24:25No.116969+ 23年1月頃消えます
解いてください
1無題Name名無し 22/05/25(水)12:20:14No.116970+
極限なら不定形
自明な体(普通は排除される対象だが)なら0
より一般には未定義
2無題Name名無し 22/05/25(水)12:27:23No.116971+
輪だと0/0っていう1つの元になるんだっけ
あとスレ画を極限と考えるのは無理な気がする
どこにもlimの記号入って無いし
3無題Name名無し 22/05/25(水)12:28:37No.116972+
ちなみに輪はクソマイナーな奴でwikipediaで初めて知った
https://ja.wikipedia.org/wiki/%E8%BC%AA_(%E6%95%B0%E5%AD%A6)
4無題Name名無し 22/05/25(水)22:36:55No.116973+
log(0÷0) = log(0) - log(0) = 0
なので
0÷0 = e^0 = 1、
5無題Name名無し 22/05/26(木)09:56:44No.116974+
O
6無題Name名無し 22/05/26(木)20:31:43No.116981+
とオモタがlog(0)は不定っていやー不定やったな、
7無題Name名無し 22/05/26(木)21:49:20No.116982+
m^(n+1) = (m^n)*m
よって
m^(n+1)÷m = m^n
ここで m=n=0 とすると
0÷0 = 0^0
ここで 0^0=1 より
0÷0 = 1
8無題Name名無し 22/05/27(金)16:31:33No.116989そうだねx1
9無題Name名無し 22/05/28(土)11:16:29No.116996+
>No.116982
mで両辺を割る前にmが0でないことを確認することを必要だったはず……
10無題Name名無し 22/05/28(土)21:00:36No.116997そうだねx1
0で割るの禁止というルールは証明可能なことがらでつか
証明不可能なら公理やん
11無題Name名無し 22/05/29(日)14:02:25No.117000+
0で除算しました(エラー
12無題Name名無し 22/05/29(日)23:51:50No.117005+
証明できると言っていいかは分からんが
環を局所化する際に積閉集合に0が含まれると
環の構造が潰れて零環になってしまうから
体の構造を持つもので分母に0は置けない
13無題Name名無し 22/06/01(水)14:00:34No.117012+
補足すると
環の局所化と同型ではない体が存在したとしても
1=0/0=(0+0)/0=2より
1=0となりやはり自明な体となるので
体のような代数構造と零除算は両立できない
14無題Name名無し 22/06/25(土)15:46:53No.117097+
①数で考えるとa×b=cでa=0のときc=0すなわち0×b=0で
これは「いかなるbでも成り立つ」
これをc÷a=bに当てはめると0÷0=「いかなるbでもありうる」
②ちなみにb=0のときc=0すなわちa×0=0および0÷a=0で
これも「基本的には」「いかなるaでも成り立つ」
③でも②は0÷0=「いかなるbでもありうる」(①)というのと相容れない
④しかし0×b=0がいかなるbでも成り立つことは相変わらず正しい
⑤これら①②③④全てが正しい場合
「このように÷aが÷0すなわち0除算だったときに限り例外的にbの値は定まらなくなる性質があり
これは0÷a=bのときb=0になる通常の性質よりも優先される」
ということに結局なる
⑥c÷a=bでa=0かつc=0のときも「÷aの性質が例外的に優先される」ので
0÷0=「いかなるbでもありうる」の妥当性は通常と例外の場合を考慮してもなお保証されている
証明の方針としてはこんなもん…?

- GazouBBS + futaba-